-
001 المقدمة00:07:50
-
002 ملاحظات سريعة00:02:14
-
003 بيئة عمل بايثون00:05:34
-
004 بيئة عمل R00:01:38
-
005 المعالجة المسبقة للبيانات00:05:32
-
006 المكتبات في بايثون00:03:57
-
007 المكتبات في لغة R100:02:33
-
008 استيراد الداتا بالبايثون00:06:32
-
009 ستيراد الداتا في R00:03:33
-
010 معالجة البيانات المفقودة في بايثون00:04:20
-
011 معالجة البيانات المفقودة في R00:08:21
-
012 معالجة البيانات النصية بالبايثون00:14:26
-
013 معالجة البيانات النصية في R00:06:28
-
014 فصل الداتا بالبايثون00:06:05
-
015 فصل الداتا في R00:09:15
-
016 Scaling in Python00:06:35
-
017 Scaling in R00:04:43
-
018 علم البيانات و الأعمال00:05:05
-
019 شرح simple linear regression00:07:15
-
020 شرح simple linear regression 200:03:16
-
021 SLR الخطوة الأولى بالبايثون00:12:01
-
022 SLR الخطوة الثانية بالبايثون00:05:38
-
023 SLR الخطوة الثالثة بالبايثون00:05:10
-
024 SLR الخطوة الرابعة بالبايثون00:07:58
-
025 SLR inR الخطوة الأولى00:09:41
-
026 SLR inR الخطوة الثانية00:03:54
-
027 SLR inR الخطوة الثالثة00:05:06
-
028 SLR inR الخطوةالرابعة00:10:02
-
029 مناقشة الداتاست00:02:59
-
030 مقدمة MLR00:04:08
-
031 Dummy Variable00:07:19
-
032 P Value00:01:53
-
033 Building a model00:10:05
-
034 MLR in Python Step100:11:01
-
035 MLR in Python Step200:03:36
-
036 MLR in Python Step300:02:21
-
037 التحضير لعمل BE00:05:12
-
038 BE00:08:39
-
039 Automatic BE00:01:57
-
040 MLR in R step100:08:34
-
041 MLR in R step 200:04:37
-
042 MLR in R step 300:04:17
-
043 Automatic BE in R00:08:19
-
044 Polynomial Regression00:07:07
-
045 مجموعة البيانات00:03:30
-
046 Poly Reg in python step100:08:25
-
047 Poly Reg in python step 200:09:47
-
048 Poly Reg in python step 300:13:51
-
049 Poly Reg in python step 400:05:00
-
050 Poly Reg in R step 100:06:18
-
051 Poly Reg in R step 200:08:36
-
052 Poly reg in R step 300:09:55
-
053 Poly Reg in R step 400:05:43
-
054 Support Vector Regressor00:07:39
-
055 SVR in python00:18:16
-
056 SVR in R00:13:34
-
057 Decision Tree Introduction00:05:40
-
058 Decision Tree in python00:08:59
-
059 Decision Tree in R00:11:41
-
060 Decision Tree Introduction00:05:40
-
061 Decision Tree in python00:08:59
-
062 Decision Tree in R00:11:41
-
063 Random Forest Introduction00:03:43
-
064 Random Forest in Python00:17:29
-
065 Random Forest in R00:15:47
-
066 Which model00:03:09
-
067 Continuous Uniform Distributions00:06:51
-
068 Binomial Distribution00:10:03
-
069 Poisson Distribution00:07:11
-
070 Normal Distribution00:05:37
-
071 T Distribution00:07:17
-
072 Hypothesis Testing00:08:14
-
073 Web Scrapping 100:10:47
-
074 Web Scrapping 200:10:42
-
075 Python Part100:08:54
-
076 Python Part200:07:26
-
077 Python Part300:08:43
-
078 Python Part400:08:27
-
079 Kernel SVM in Python00:14:22
-
080 Kernel SVM in R00:05:31
-
081 Naive Bayes Introduction00:04:48
-
082 Naive Bayes in Python00:12:20
-
083 Naive Bayes in R00:09:23
-
084 DT Classification Introduction00:04:41
-
085 DT Classifier in Python00:15:06
-
086 DT Classifier in R00:10:47
-
087 Random Forest00:02:59
-
088 Random Forest classifier in Python00:13:38
-
089 Random Forest classifier in R00:12:56
-
090 Evaluating Performance00:07:29
-
091 كيف أختار المودل؟00:03:26
-
092 Clustering Introduction00:04:31
-
093 K means Algorithms00:04:29
-
094 K means in Python00:24:06
-
095 K means in R00:18:54
-
096 Hierarchical Clustering introduction00:06:39
-
097 HC in Python step 100:08:19
-
098 HC in Python step 200:06:49
-
099 HC in R step 100:07:16
-
100 HC in R step 200:06:34
-
101 Apriori Algorithms intro00:04:59
-
102 Apriori Algorithms step 1 in Python00:09:10
-
103 Apriori Algorithms step 2 in Python00:08:14
-
104 Apriori Algorithms step 3 in Python00:07:43
-
105 Apriori Algorithms step 1 in Pythonn00:07:12
-
106 Apriori Algorithms step 2 in Pythonn00:04:40
-
107 Apriori Algorithms step 3 in Pythonn00:03:34
-
108 Elcat Model00:02:13
-
109 Elcat Model in R00:08:03
-
110 Reinforcement Learning00:02:35
-
111 Multi Armed Bandit Problem00:08:04
-
112 Upper Confidence Bound00:06:58
-
113 USB step 1 in Python00:08:03
-
114 UCB step 2 in Python00:16:54
-
115 UCB step 3 in Python00:08:23
-
116 UCB step 4 in Python00:03:10
-
117 UCB step 1 in R00:08:54
-
118 UCB step 2 in R00:14:52
-
119 UCB step 3 in R00:08:16
-
120 UCB step 4 in R00:03:03
-
121 Thompson Sampling Alg00:03:58
-
122 Thompson in Python00:13:17
-
123 Thompson in R00:15:05
-
124 Natural Language Processing Intro00:07:58
-
125 NLP step 1 in Python00:09:04
-
126 NLP step 2 in Python00:09:41
-
127 NLP step 3 in Python00:01:22
-
128 NLP step 4 in Python00:08:41
-
129 NLP step 5 in Python00:10:08
-
130 NLP step 6 in Python00:07:04
-
131 NLP step 7 in Python00:04:11
-
132 NLP step 8 in Python00:09:55
-
133 NLP step 1 in R00:07:19
-
134 NLP step 2 in R00:04:36
-
135 NLP step 3 in R00:03:01
-
136 NLP step 4 in R00:02:08
-
137 NLP step 5 in R00:02:12
-
138 NLP step 6 in R00:03:46
-
139 NLP step 7 in R00:03:36
-
140 NLP step 8 in R00:02:35
-
141 NLP step 9 in R00:09:36
-
142 NLP step 10 in R00:07:23
-
143 Deep Learning100:04:36
-
144 Deep Learning 200:08:21
-
145 Business Problem Descriptive00:03:22
-
146 Artificial Nerual Network Steps00:03:24
-
147 The Neuron00:11:41
-
148 The Activiation Function00:05:12
-
149 NN works00:07:09
-
150 NN learrn00:10:52
-
151 Gradient Descent00:07:08
-
152 Stochostic Gradient Descent00:03:39
-
153 backprobacation00:02:49
-
154 ANN IN Python step 100:08:57
-
155 ANN IN Python step 200:18:10
-
156 ANN IN Python step 300:04:20
-
157 ANN IN Python step 400:05:37
-
158 ANN IN Python step 500:02:32
-
159 ANN IN Python step 600:03:06
-
160 ANN IN Python step 700:04:10
-
161 ANN IN Python step 800:05:06
-
162 ANN IN Python step 900:06:25
-
163 ANN IN Python step 1000:05:19
-
164 ANN in R step 100:08:48
-
165 ANN in R step 200:04:15
-
166 ANN in R step 300:05:54
-
167 ANN in R step 400:07:12
-
168 Convloutional Neural Networks00:03:54
-
169 what are CNN00:09:27
-
170 step1 Convloution00:05:38
-
171 step 2 b RelU00:03:42
-
172 step 2 Pooling00:05:09
-
173 step 3 Flattning00:02:07
-
174 step 4 Fully Connected00:07:23
-
175 Summary00:03:07
-
176 Softmax Cross Entropy00:04:07
-
177 CNN in Python step 100:05:33
-
178 CNN in Python step 200:05:16
-
179 CNN in Python step 300:02:07
-
180 CNN in Python step 400:03:46
-
181 CNN in Python step 500:02:34
-
182 CNN in Python step 600:05:17
-
183 CNN in Python step 700:04:01
-
184 CNN in Python step 800:03:06
-
185 CNN in Python step 900:12:06
-
186 CNN in Python step 1000:02:04
-
187 CNN in R00:01:16
-
188 DR Introduction00:03:20
-
189 PCA Intro00:05:07
-
190 PCA in Python step 100:07:05
-
191 PCA in Python step 200:09:51
-
192 PCA in Python step 300:05:44
-
193 PCA in R step 100:07:50
-
194 PCA in R step 200:07:31
-
195 PCA in R step 300:10:05
-
196 LDA Intro00:05:03
-
197 LDA in Python00:08:30
-
198 LDA in R00:13:34
-
199 KernelPCA in Python00:11:33
-
200 KernelPCA in R00:17:49
-
201 Model Selection XGBoost Intro00:05:11
-
202 K cross validation in Python00:12:58
-
203 K cross validation in R00:24:56
-
204 Grid Search in Python step 100:07:34
-
205 Grid Search in Python step 200:07:12
-
206 Grid Search in R00:10:06
-
207 XGBoost in Python step 100:05:42
-
208 XGBoost in Python step 200:07:23
-
209 XGBoost in R00:10:21
-
210 The End00:02:20
معلومات الدورة
- المستوى: كل المستويات
- عدد المواد: 210
- اللغة: عربي
- عدد الطلاب: 16
- آخر تحديث: 24/01/2022
الشهادة
قم بالتسجيل في الموقع والالتحاق بالدورة للحصول على شهادة إكمال الدورة
سجل الآن
يجب الالتحاق بالدورة لتتمكن من
التفاعل على مواد الدورة