دورة التعليم الآلي Machine Learning
تعرف على كل ما يخص علم البيانات والتعلّم الآلي Machine Learning
0.0(0 تقييم)
16 طالب ملتحق
عن الدورة
تعرف على كل ما يخص علم البيانات والتعلّم الآلي Machine Learning
محتوى الدورة
-
001 المقدمة00:07:50
-
002 ملاحظات سريعة00:02:14
-
003 بيئة عمل بايثون00:05:34
-
004 بيئة عمل R00:01:38
-
005 المعالجة المسبقة للبيانات00:05:32
-
006 المكتبات في بايثون00:03:57
-
007 المكتبات في لغة R100:02:33
-
008 استيراد الداتا بالبايثون00:06:32
-
009 ستيراد الداتا في R00:03:33
-
010 معالجة البيانات المفقودة في بايثون00:04:20
-
011 معالجة البيانات المفقودة في R00:08:21
-
012 معالجة البيانات النصية بالبايثون00:14:26
-
013 معالجة البيانات النصية في R00:06:28
-
014 فصل الداتا بالبايثون00:06:05
-
015 فصل الداتا في R00:09:15
-
016 Scaling in Python00:06:35
-
017 Scaling in R00:04:43
-
018 علم البيانات و الأعمال00:05:05
-
019 شرح simple linear regression00:07:15
-
020 شرح simple linear regression 200:03:16
-
021 SLR الخطوة الأولى بالبايثون00:12:01
-
022 SLR الخطوة الثانية بالبايثون00:05:38
-
023 SLR الخطوة الثالثة بالبايثون00:05:10
-
024 SLR الخطوة الرابعة بالبايثون00:07:58
-
025 SLR inR الخطوة الأولى00:09:41
-
026 SLR inR الخطوة الثانية00:03:54
-
027 SLR inR الخطوة الثالثة00:05:06
-
028 SLR inR الخطوةالرابعة00:10:02
-
029 مناقشة الداتاست00:02:59
-
030 مقدمة MLR00:04:08
-
031 Dummy Variable00:07:19
-
032 P Value00:01:53
-
033 Building a model00:10:05
-
034 MLR in Python Step100:11:01
-
035 MLR in Python Step200:03:36
-
036 MLR in Python Step300:02:21
-
037 التحضير لعمل BE00:05:12
-
038 BE00:08:39
-
039 Automatic BE00:01:57
-
040 MLR in R step100:08:34
-
041 MLR in R step 200:04:37
-
042 MLR in R step 300:04:17
-
043 Automatic BE in R00:08:19
-
044 Polynomial Regression00:07:07
-
045 مجموعة البيانات00:03:30
-
046 Poly Reg in python step100:08:25
-
047 Poly Reg in python step 200:09:47
-
048 Poly Reg in python step 300:13:51
-
049 Poly Reg in python step 400:05:00
-
050 Poly Reg in R step 100:06:18
-
051 Poly Reg in R step 200:08:36
-
052 Poly reg in R step 300:09:55
-
053 Poly Reg in R step 400:05:43
-
054 Support Vector Regressor00:07:39
-
055 SVR in python00:18:16
-
056 SVR in R00:13:34
-
057 Decision Tree Introduction00:05:40
-
058 Decision Tree in python00:08:59
-
059 Decision Tree in R00:11:41
-
060 Decision Tree Introduction00:05:40
-
061 Decision Tree in python00:08:59
-
062 Decision Tree in R00:11:41
-
063 Random Forest Introduction00:03:43
-
064 Random Forest in Python00:17:29
-
065 Random Forest in R00:15:47
-
066 Which model00:03:09
-
067 Continuous Uniform Distributions00:06:51
-
068 Binomial Distribution00:10:03
-
069 Poisson Distribution00:07:11
-
070 Normal Distribution00:05:37
-
071 T Distribution00:07:17
-
072 Hypothesis Testing00:08:14
-
073 Web Scrapping 100:10:47
-
074 Web Scrapping 200:10:42
-
075 Python Part100:08:54
-
076 Python Part200:07:26
-
077 Python Part300:08:43
-
078 Python Part400:08:27
-
079 Kernel SVM in Python00:14:22
-
080 Kernel SVM in R00:05:31
-
081 Naive Bayes Introduction00:04:48
-
082 Naive Bayes in Python00:12:20
-
083 Naive Bayes in R00:09:23
-
084 DT Classification Introduction00:04:41
-
085 DT Classifier in Python00:15:06
-
086 DT Classifier in R00:10:47
-
087 Random Forest00:02:59
-
088 Random Forest classifier in Python00:13:38
-
089 Random Forest classifier in R00:12:56
-
090 Evaluating Performance00:07:29
-
091 كيف أختار المودل؟00:03:26
-
092 Clustering Introduction00:04:31
-
093 K means Algorithms00:04:29
-
094 K means in Python00:24:06
-
095 K means in R00:18:54
-
096 Hierarchical Clustering introduction00:06:39
-
097 HC in Python step 100:08:19
-
098 HC in Python step 200:06:49
-
099 HC in R step 100:07:16
-
100 HC in R step 200:06:34
-
101 Apriori Algorithms intro00:04:59
-
102 Apriori Algorithms step 1 in Python00:09:10
-
103 Apriori Algorithms step 2 in Python00:08:14
-
104 Apriori Algorithms step 3 in Python00:07:43
-
105 Apriori Algorithms step 1 in Pythonn00:07:12
-
106 Apriori Algorithms step 2 in Pythonn00:04:40
-
107 Apriori Algorithms step 3 in Pythonn00:03:34
-
108 Elcat Model00:02:13
-
109 Elcat Model in R00:08:03
-
110 Reinforcement Learning00:02:35
-
111 Multi Armed Bandit Problem00:08:04
-
112 Upper Confidence Bound00:06:58
-
113 USB step 1 in Python00:08:03
-
114 UCB step 2 in Python00:16:54
-
115 UCB step 3 in Python00:08:23
-
116 UCB step 4 in Python00:03:10
-
117 UCB step 1 in R00:08:54
-
118 UCB step 2 in R00:14:52
-
119 UCB step 3 in R00:08:16
-
120 UCB step 4 in R00:03:03
-
121 Thompson Sampling Alg00:03:58
-
122 Thompson in Python00:13:17
-
123 Thompson in R00:15:05
-
124 Natural Language Processing Intro00:07:58
-
125 NLP step 1 in Python00:09:04
-
126 NLP step 2 in Python00:09:41
-
127 NLP step 3 in Python00:01:22
-
128 NLP step 4 in Python00:08:41
-
129 NLP step 5 in Python00:10:08
-
130 NLP step 6 in Python00:07:04
-
131 NLP step 7 in Python00:04:11
-
132 NLP step 8 in Python00:09:55
-
133 NLP step 1 in R00:07:19
-
134 NLP step 2 in R00:04:36
-
135 NLP step 3 in R00:03:01
-
136 NLP step 4 in R00:02:08
-
137 NLP step 5 in R00:02:12
-
138 NLP step 6 in R00:03:46
-
139 NLP step 7 in R00:03:36
-
140 NLP step 8 in R00:02:35
-
141 NLP step 9 in R00:09:36
-
142 NLP step 10 in R00:07:23
-
143 Deep Learning100:04:36
-
144 Deep Learning 200:08:21
-
145 Business Problem Descriptive00:03:22
-
146 Artificial Nerual Network Steps00:03:24
-
147 The Neuron00:11:41
-
148 The Activiation Function00:05:12
-
149 NN works00:07:09
-
150 NN learrn00:10:52
-
151 Gradient Descent00:07:08
-
152 Stochostic Gradient Descent00:03:39
-
153 backprobacation00:02:49
-
154 ANN IN Python step 100:08:57
-
155 ANN IN Python step 200:18:10
-
156 ANN IN Python step 300:04:20
-
157 ANN IN Python step 400:05:37
-
158 ANN IN Python step 500:02:32
-
159 ANN IN Python step 600:03:06
-
160 ANN IN Python step 700:04:10
-
161 ANN IN Python step 800:05:06
-
162 ANN IN Python step 900:06:25
-
163 ANN IN Python step 1000:05:19
-
164 ANN in R step 100:08:48
-
165 ANN in R step 200:04:15
-
166 ANN in R step 300:05:54
-
167 ANN in R step 400:07:12
-
168 Convloutional Neural Networks00:03:54
-
169 what are CNN00:09:27
-
170 step1 Convloution00:05:38
-
171 step 2 b RelU00:03:42
-
172 step 2 Pooling00:05:09
-
173 step 3 Flattning00:02:07
-
174 step 4 Fully Connected00:07:23
-
175 Summary00:03:07
-
176 Softmax Cross Entropy00:04:07
-
177 CNN in Python step 100:05:33
-
178 CNN in Python step 200:05:16
-
179 CNN in Python step 300:02:07
-
180 CNN in Python step 400:03:46
-
181 CNN in Python step 500:02:34
-
182 CNN in Python step 600:05:17
-
183 CNN in Python step 700:04:01
-
184 CNN in Python step 800:03:06
-
185 CNN in Python step 900:12:06
-
186 CNN in Python step 1000:02:04
-
187 CNN in R00:01:16
-
188 DR Introduction00:03:20
-
189 PCA Intro00:05:07
-
190 PCA in Python step 100:07:05
-
191 PCA in Python step 200:09:51
-
192 PCA in Python step 300:05:44
-
193 PCA in R step 100:07:50
-
194 PCA in R step 200:07:31
-
195 PCA in R step 300:10:05
-
196 LDA Intro00:05:03
-
197 LDA in Python00:08:30
-
198 LDA in R00:13:34
-
199 KernelPCA in Python00:11:33
-
200 KernelPCA in R00:17:49
-
201 Model Selection XGBoost Intro00:05:11
-
202 K cross validation in Python00:12:58
-
203 K cross validation in R00:24:56
-
204 Grid Search in Python step 100:07:34
-
205 Grid Search in Python step 200:07:12
-
206 Grid Search in R00:10:06
-
207 XGBoost in Python step 100:05:42
-
208 XGBoost in Python step 200:07:23
-
209 XGBoost in R00:10:21
-
210 The End00:02:20
المحاضرون
التقييمات
لا يوجد تقييمات